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Thermodynamic Behavior of Supercritical 
Fluid Mixtures 1 
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C. M. Everhart 2 

The recent surge of interest in supercritical extraction has brought the unusual 
properties of supercritical mixtures into the focus of attention. We discuss some 
of the properties of binary mixtures in a range around the gas-liquid critical line 
from the point of view of supercritical solubility. The general thermodynamic 
relationships that govern the enhancement of supercritical solubility are readily 
derived by a mathematical method introduced by Ehrenfest. The enhancement is 
governed by a strong divergence centered at a critical end point. We give the 
classical and nonclassical power-law behavior of the solubility along the 
experimental paths of constant temperature or pressure. The factor multiplying 
the strong divergence contains the partial molar volume or enthalpy of the 
solute in the supercritical phase. These partials are quite anomalous, especially if 
the mole fraction of the solute is small. They diverge at the solvent's critical 
point. We cite experimental evidence of these divergences, especially the results 
of recent experiments in dilute near-critical salt solutions. The anomalies found 
in these salt solutions are common to all dilute near-critical mixtures with a 
nonvolatile second component. We show that on experimentally convenient 
paths the solubility in a binary liquid mixture near its consolute points is not 
strongly enhanced. Finally, we sketch a nonclassical model based on the 
decorated lattice gas that can be used to describe supercritical solubility enhan- 
cement at low solubility, with the pure solvent used as a reference. 
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1. SUPERCRITICAL ENHANCEMENT 

We imagine a binary mixture in which one component, the solvent, is 
much more volatile that the other and is in a state near its critical point. 
Suppose that the nonvolatile component is not miscible with the solvent in 
all proportions and is present in excess in an additional solid or liquid 
phase. For the sake of simplicity we consider this phase as pure and inert, 
but this is not an essential limitation. The gas-liquid critical line that 
begins at the solvent's critical point is interrupted at a critical end point, 
where the mixture saturates and the additional phase appears. Usually, 
there is another critical end point marking the end of the critical line that 
starts at the solute's critical point. Our discussion is limited mostly to the 
first critical end point. At saturation, and on an isothermal path, it is found 
that the mole fraction of the solute in the supercritical phase increases 
rapidly with pressure in the vicinity of the critical end point. Conversely, 
the mole fraction decreases rapidly with temperature along an isobar. For 
the critical end point near the solvent's critical point, the reason is clear: a 
small change in pressure or temperature will cause large changes in the 
density and, therefore, in the solvent power of a near-critical fluid. There is, 
however, a more fundamental reason for the enhancement of supercritical 
solubility, a reason that is valid for both critical end points. The changes in 
solubility are governed by two thermodynamic relationships: 

dx2 H 2  - H~ (1) 
dT p. T(1-x2)(O2G/~x~)eT 

dx2 _ V ~ -  F'2 
dP v~ (1-x2)(O2G/Ox2)pr (2) 

Here 2 refers to the solute, Vs is the molar volume, Hs is the molar 
enthalpy of the solute component as the inert phase,/ t2 is the partial molar 
enthatpy, V2 is the partial molar volume of the solute in the supercritical 
phase, and G(P, T, x) is the Gibbs free energy as a function of pressure P, 
temperature T, and mole fraction x. The symbol a denotes that a second 
phase is present in excess. 

Equations (1) and (2) can be viewed as information on the slope of a 
phase boundary in T - x  or P - x  space. As Ehrenfest showed Eli ,  such 
slopes can be related to changes in thermodynamic properties as the phase 
boundary is crossed. Let C(X, Y) be a function which is continuous across 
a phase boundary but whose derivatives are not. The boundary curve 
separates regions I and II, each of which, in principle, may be a multiphase 
region. 
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Along this boundary curve, we have 

(OC~ I (OC~ I 
dCI= \OX/I y dX+ \ 8 Y / x  

and 

dZ (3) 

(OCX] II (8C~ II 
d C " =  \~--~) y dX+ \ - ~ / x  dY (4) 

Since C is continuous, we have dC I = dC ~ and therefore 

<) 5 <) t,, o- 

between where ~ denotes the boundary curve and 6 the difference 
derivatives in regions I and II at the boundary curve. 

As an example of the usefulness of Eq. (5), consider for a one-com- 
ponent fluid the chemical potential/~(P, T) as the function C and the vapor 
pressure curve P(T) as the boundary curve. Then 

Since (O#/~?P)T= V and (@/OT)p = - S ,  we obtain Clapeyron's equation, 
(dP/dT)o = AS/A V. We now derive Eq. (1) for the change in solubility by 
applying Eq. (5) to the case of a supercritical solvent, component 1, and a 
solute, component 2, in the presence of an inert additional phase of com- 
ponent 2. We consider/~2(T, x2)/T at constant pressure as the continuous 
function and the locus where the inert phase first appears as the phase 
boundary. 

Then, from Eq. (5), 

(7) 

since 

\ 

k~X2/ter 

and 

a T J e x  - Y  (9) 
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we have 

dx ~ FP2 - I L  
d r  p,, = r ( 1  - x~)(~G/~x~), ,~ (10) 

Here we have presumed that the additional phase is inert: the H - x  
relation in the region II at constant P, T is linear and terminates at Hs for 
x2 = 1 so t h a t / ~ i  _ Hs. We have made use of the fact that ( ~ 2 G / ~ x Z ) p  r = 0 
in a two-phase, two-component system. Equation (2) is derived in the same 
way, with //2(P, x2) at constant T as the continuous function. If the 
additional phase is not inert, Eqs. (1) and (2) are readily generalized by 
replacing the molar properties with the appropriate partial molar proper- 
ties in that phase. Equations (1) and (2) immediately reveal the origin of 
enhancement of supercritical solubility: the denominator is approaching 
zero at the critical end point. In fact, the denominator will be zero all along 
the critical line, but as long as the additional phase is present, the critical 
end point is the only point on the critical line that the system can actually 
reach. Thus this end point, rather than the solvent's critical point, is the 
focus of the critical enhancement, a fact sometimes overlooked in the inter- 
pretation of data on the enhanced solubility in fluids [3] (Fig. 4). 

The behavior of (~2G/OxZ)p T is strong in the sense of Griffiths and 
Wheeler [21. This means that this property goes to zero as iT-Toel  ~ or 
] P -  Poel ~ on a path that is along the coexistence surface of the mixture in 
field space [2]; here 7 is the critical exponent characterizing the com- 
pressibility of a pure fluid, with the value 7 = 1 for a classical (van der 
Waals-like) equation of state, while 7 -- 1.24 for real fluids. The subscript ce 
denotes the critical end point. The experimental path is usually a constant- 
temperature or a constant-pressure path, which intersects the coexistence 
surface in field space. This leads to an exponent renormalization from y to 
7//76 [2, 4, 5], where/~ is the critical exponent characterizing the shape of 
the coexistence curve and 6 is the one characterizing the shape of the 
critical isotherm of the one-component fluid. Consequently, one expects for 
the enhancement of the supercritical solubility, Eqs. (1) and (2), a power- 
law behavior as h T -  Toel 7/e~ along the critical isobar and as IP-Pc~[-7/B~ 
along the critical isotherm. The exponent 7/~6 equals 2/3 for classical 
equations and 0.8 for real fluids (not 1, as in the caption of Fig. 5 in Ref. 3). 
This behavior of (~?x/~T)e,o and (Ox/t?T)r,o implies that I x - x c ~ [ ~  
[ T -  rce[ '/6 at Pc, and ]x-xoel  ~ ]P-P~,I  1/~ at T~e. 

So far, we have discussed the origin of the enhancement of super- 
critical solubility: the fact that the denominator in Eqs. (1) and (2) 
approaches zero at the critical end points. In the next section, we pay 
attention to the behavior of the numerator in Eqs. (1) and (2). 
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2. PARTIAL MOLAR PROPERTIES; DILUTE SALT SOLUTIONS 

We now turn to the numerators of Eqs. (l) and (2) and note that, cer- 
tainly near the solvent's critical point, the molar volume and enthalpy of 
the inert phase are smooth functions of the temperature and pressure that 
"ignore" the presence of a critical end point. Any anomalous behavior has 
to come from V2, /72, the partials of the solute in the supercritical phase. 
In the presence of the inert phase, these partials will be finite, even at the 
critical end point. The only place where they diverge is at the solvent's 
critical point, which is never reached when the inert phase is present. The 
partials, however, can have very large values of either sign, and for non- 
volatile solutes they are typically large and negative near the solvent's 
critical point. The closer the critical end point is to the solvent's critical 
point (the lower the solubility), the larger the relative enhancement. 
Figure 1 gives an idea of the behavior of the excess enthalpy of toluene in 
supercritical carbon dioxide [-6, 7]. The excess enthalpy is plotted at a fixed 
pressure of 7.60 MPa along a number of isotherms. Three of these, at 
358.15, 413.15, and 470.15 K, traverse a two-phase region with a straight 
tie line and large enthalpies of evaporation. The other two, although in a 
one-phase region, show very large excess enthalpies. In the case of the 
lowest isotherm, at 308.15 K, near-critical carbon dioxide is being mixed 
with liquid toluene. In the case of the highest isotherm, near-critical toluene 
is mixed with low-density carbon dioxide. Thus, the partial molar enthalpy 
t72, which is related to the slope of these curves, undergoes large changes 
in supercritical mixtures. In particular, we draw attention to the dramatic 
change in initial slope at the pure-CO2 side (x= 1) as the temperature 
approaches the critical temperature of CO2 (304 K). 

Figure 2 makes clear why the partials of volume and enthalpy of the 
solute diverge at the solvent's critical point. It shows the V -  x relation of a 
mixture at the critical temperature of the more volatile component. The 
addition of a nonvolatile causes a two-phase region to open up. The critical 
isotherm-isobar is indicated. Its slope, at any point, equals (~?V/c~x)pr. 
Since 

VI = V -  x(~V/Ox)~r 
(11) 

v2 = v +  (1 -x ) (~V/~x)pT 

and since the slope (OV/Ox)pr is infinite at the critical point, we conclude 
that P2 ~ - ~ .  Russian scientists reached this conclusion on the basis of 
an analysis of the classical Helmholtz free energy [8, 9]. According to the 
classical model, the coexistence curve in Fig. 2 is parabolic and the critical 
isotherm isobar is cubic [8-10], so that (OV/~?x)er and g2 diverge as x - 2 / 3  

on the critical isotherm-isobar. Real fluids behave nonclassically. Wheeler 
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Fig 1. Five H E-x isotherms at 7.60 MPa for the system toluene 
(x=0}- -ca rbon  dioxide ( x = l )  [6 ,7] .  The large values of H E 
suggest that a phase transition occurs. In fact, only the isotherms at 
358.15, 413.15, and 470.15 K traverse a two-phase region as evidenced 
by the straight tie line. The signs of the changes in slope as phase 
boundaries are crossed indicate that the phase boundary in T - x  
space has a negative slope (Ref. 7). The 308.15 and 573.15K 
isotherms, though not traversing two-phase regions, show large H E 
values nevertheless. Of interest is the strong downward slope near 
x =  1 on the 308.15 K isotherm, which is near the critical point of 
CO2, and the strong upward slope near x = 0  on the 573.15K 
isotherm, which is near the critical point of toluene. 
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Fig. 2. At the critical pressure and temperature of 
the solvent, an involatile solute is added. It leads to 
phase separation. The coexistence curve and critical 
isotherm-isobar  are sketched. The slope of the 
critical isotherm isobar approaches - o o  in the 
limit x ---, 0. 

[11] used the decorated lattice gas to derive the nonclassical asymptotic 
behavior of dilute mixtures, while Chang et al. used the Leung-Griffiths 
model [10]. The exponent of the divergence of V2 on the critical isotherm- 
isobar equals 7/f13 ~ 0.8. The limiting behavior of the partial molar enthalpy 
Er 2 can be shown to be the same as that of P2 [10]. The partial molar heat 
capacity, however, diverges much more strongly than the partial molar 
volume [10]. On the critical isotherm-isobar, it diverges with an exponent 
2 - 1 / 6 ~  1.8. The strong divergence of the partial molar volume of the 
solute was recently seen by Eckert et al. [13] in a number of solutions of 
nonvolatiles in ethylene and carbon dioxide and, also, by van Wasen and 
Schneider [14]. The ideal place to look for these anomalies, however, is in 
dilute near-critical salt solutions in which the difference in volatility 
between the two components is extreme. Large negative apparent molal 
properties (which are related to the partials as chords are to slopes) have 
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been reported in a sequence of fine experiments in aqueous sodium chloride 
solutions at high temperatures and pressures. We refer to apparent molar 
volumes by Benson et al., [ 15 ]; apparent enthalpies of dilution by Busey et 
al. [16] and by Simonson et al [17], and apparent molar heat capacities 
by Wood et al. [-18]. The large anomalies are to be expected in any dilute 
near-critical mixture in which the solute is nonvolatile [10, 19, 20]. 

Supercritical mixtures therefore show a critical anomaly at the 
solvent's critical point. In supercritical extraction, the solvent's critical 
point is never reached because of the presence of the additional phase. 
Nevertheless, if the solubility is small, as it is many applications, the 
numerator in Eqs. (1) and (2) is strongly anomalous, thus increasing the 
enhancement. In those cases, one would not expect to see simple power-law 
behavior due to the denominator alone in any but a very small region 
around the critical end point. 

3. S U P E R C R I T I C A L  E N H A N C E M E N T  N E A R  A 
CONSOLUTE POINT 

It has been suggested by Procaccia and Gitterman [21] that a binary 
mixture near a consolute point could be used as a supercritical extractant. 
The derivative (Sx/ST)p.~ indeed diverges strongly in the situation Procac- 
cia and Gitterman describe: a three-component mixture, in three phases, 
one solid phase of pure component 3, a near-critical ternary liquid phase, 
and a noncritical low-pressure vapor phase of components 1 and 2. The 
presence of the constant-pressure vapor phase is crucial; in order to keep 
the pressure constant while the system is heated, however, a large amount 
of vapor has to be created. In effect, the fluid's composition is being 
changed by transforming part of the liquid into a vapor of very different 
composition. Use is made of the fact that the T - x  bubble curve at con- 
stant pressure has a horizontal inflection at the ternary-mixture critical end 
point. 

This system when studied other ways, in a constant-volume vessel or 
at constant pressure but without the vapor, behaves very differently. In 
either case, the vapor phase is irrelevant and the mathematical 
isomorphism of the gas-liquid and the liquid-liquid phase transition 
[-5, 22] is achieved by the following transformation of variables. 

One-component fluid Partially miscible binary 

P --#2 
p - p~ x - xo 

T T 
(12) 
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An observation of these mapping relations reveals immediately that the 
convenient pressure "knob" that permits the easy variation of the density of 
the one-component fluid, and therefore of its solvent power, is replaced by 
a chemical potential knob that usually cannot be turned in the laboratory. 
This solvent power can be changed only by varying the composition of the 
liquid phase. Chemists have varied solvent power by the use of mixed 
solvents for over a century; in the Procaccia-Gitterman scheme, the solvent 
strength is varied by evaporating or condensing a large volume of vapor. In 
the absence of a vapor phase, however, the use of the temperature knob 
does not give the desired strong enhancement in the binary liquid, because 
this knob would be turned at constant composition of the binary liquid 
mixture. Thus dx/dTl~ is measured at the constant ratio XA/XB of the AB 
mixture (here a refers to the third component or solute present in excess), 
which is a constant density in the sense of Griffiths and Wheeler [ 1 ]. Thus 
in the usual experimental situation, one would expect no more than a weak 
anomaly. If the solubility of the third component in the binary liquid is 
low, however, we expect that dilute-mixture effects of the same type as dis- 
cussed in Section 2, may lead to additional enhancement, albeit not an 
actual divergence, caused by the nearness of the solvent's critical point. 

4. A M O D E L  FOR SUPERCRITICAL SOLUBILITY 

Classical thermodynamic functions for mixtures such as proposed by 
van der Waals, generalized by engineers for the past century, and 
systematized by van Konynenburg and Scott [23], are capable of 
qualitatively accounting for the phenomenon of supercritical solubility 
enhancement in the case that the additional phase is liquid. Since no 
known equation of state generates the solid along with the fluid phases, the 
supercritical enhancement in the case of the presence of a solid has to be 
handled by using a separate formulation for the solid and then equating 
chemical potentials [24]. Since the nonclassical critical isotherm x - P  at 
Tce, or x - T  at Poe, is much flatter than the classical one, it appears 
desirable to improve the description by using a nonclassical equation of 
state. Approximate nonclassical expressions have been suggested in the 
Russian literature [9] and by Gitterman and collaborators [3], which are 
analogous to those proposed in the 1950s for pure fluids, prior to the 
development of the scaling laws. These expressions impose the correct 
asymptotic form on the critical isochore and the critical isotherm and inter- 
polate in between. Although such approximations yield correct answers in 
certain applications, they lead to nonanalyticities in the one-phase region, 
and if applied to mixtures, they miss known features of the critical-line 
behavior [2]. Another suggestion has been to combine an accurate non- 
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classical description of the pure solvent with the classical idea of 
corresponding states for a mixture of constant composition [25]. It can be 
shown that this approach leads to undesirable inconsistencies at the 
solvent's critical point [12]. 

Thus there is no choice but to use an internally consistent fully non- 
classical formulation. One such formulation is the Leung-Griffiths model 
and its variants [26, 27]. The drawback of this model is a proliferation of 
constants and the need for a continuous critical line connecting the critical 
points of the pure components. An alternative is the decorated lattice gas, 
introduced by Widom and co-workers [28] and used and reviewed by 
Wheeler and co-workers for many applications [29, 30]. An ordinary or 
simple lattice gas is a regular array of cells, each of which can be empty or 
filled with no more than one molecule. Molecules in nearest-neighbor cells 
are assigned an attractive energy. It is well known that the simple lattice 
gas is isomorphic with the Ising model [-5, 22, 29]. It is a very rudimentary 
model for a gas-liquid phase transition with a built-in symmetry with 
respect to the p = po axis, with po the critical density, when one-half of the 
sites are occupied. In the decorated lattice gas (Fig. 3) additional secondary 
cells are placed in the centers of the line segments that connect centers of 
the original primary cells. If the molecules are allowed to occupy both 
types of cells (multiple occupancy still being forbidden), and an assumption 
is made about the strengths of the interactions between occupied 
primary-primary and primary secondary cells, then the resulting partition 
function can be mapped onto the Ising model by analytic transformation of 

• X • 

• x • 

(ill IBI 

Fig. 3. Cells of the decorated lattice gas [28] as used in our modeling of supercritical 
solubility. The square cells are on the primary sites and are accessible to solvent molecules or 
holes. The diamond-shaped interstitial cells are on the secondary sites and are accessible to 
solvent molecules, solute molecules, and holes. 
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variables. The one-component decorated lattice gas therefore has the same 
critical exponents as the simple lattice gas but differs from the latter in that 
the particle-hole symmetry is broken; the coexistence curve, for instance, 
shows the asymmetry typical of real fluids. The revised and extended scaled 
equation that has been developed for describing near-critical fluids [31, 
32] is, to leading order in the scaling variables, equivalent to the decorated 
lattice gas. 

In order to describe supercritical solubility, we have to carry the 
decorated lattice gas one step further. Following Bartis and Hall [33], we 
allow solvent molecules or holes in primary cells and solvent molecules, 
solute molecules, or holes in secondary cells. Multiple occupancy is again 
forbidden. We allow for three types of interaction energies, namely, those 
between solvent molecules in adjacent primary cells, between solvent 
molecules in adjacent primary and secondary cells, and between a solvent 
molecule in a primary and a solute molecule in an adjacent secondary cell. 
Interactions between molecules in secondary cells cannot be allowed if the 
mapping onto the Ising model is to be retained. As long as the mixture is 
dilute, this restriction is acceptable. So the two-component decorated lat- 
tice gas can be transformed back to the one-component decorated lattice 
gas, which in turn maps onto the Ising model. 

Since we are interested in the supercritical regime, we have to map 
onto the Ising model in nonzero field. For this model, however, no ther- 
modynamic potential is available in closed form. We have found an alter- 
native, by mapping only the two-component decorated lattice gas onto the 
one-component decorated lattice gas. For the latter, we use the revised and 
extended scaled equation that we have developed for pure fluids. So, in 
effect, we map the properties of the dilute solution onto those of the pure 
solvent by a procedure which might be considered the nonclassical 
equivalent of corresponding states. Since the decorated lattice gas, just as 
the van der Waals equation, does not allow for the presence of a solid 
phase, we have to enter this phase by an artifact. In our first attempt, we 
have set the chemical potential of the solid equal to a constant. We have 
chosen the constant such that the critical end point falls in the right place. 
Our model then predicts the supercritical solubility of naphthalene in 
ethylene as shown in Fig. 4. The range of the solubility curves that we can 
predict is limited by the range of validity of the scaled equation of ethylene 
[32]. We are presently working on the incorporation of the pressure 
dependence of the chemical potential of naphthalene in our prediction of 
the solubility curve. 

We view as the advantages of our work the correctness of the 
asymptotic behavior, the mapping onto the pure-solvent thermodynamic 
surface and the use of only two constants for characterizing the solute. This 
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Fig. 4. Prediction of the supercritical solubility of 
naphthalene in ethylene near the lower one of the 
two critical end points by means of a two-com- 
ponent decorated lattice gas [29]. The chemical 
potential of naphthalene has been set equal to a 
constant. The properties of the solution are mapped 
onto those of pure ethylene [32]. 

model will also permit us to distinguish between the effect of the strong 
anomaly caused by (O2G/~x2)e  r ~ 0 at the critical end point and the near- 
divergence of V: in Eqs. (1) and (2). 
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